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MagLIF shot on NIF gave excellent laser 
propagation and good agreement with modeling 

Quad 

Q16B 

Quad Q31B 

Focused at pipe center 

MagLIF NIF Target 

(View from GXD x-ray camera) 

Calibration 

plate 

Laser entrance  
hole + 
window 
(0.75 um thick 
polyimide)  

Tantalum  
witness plate 

Successfully demonstrated laser propagation  
at MagLIF fusion-gain scale 

B. Pollock, R2-1:  
Prior talk 
More on expts 

This talk: 
shot N160128 
Repeat, better diagnostics: 
N160425 
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Summary: MagLIF NIF shots modeled with rad-
hydro and LPI codes 

Modeling tools 
• HYDRA: ICF radiation-hydrodynamic code 

• Agrees with laser propagation down tube 
• Provides plasma conditions for LPI modeling 

• Gain spectrum: linear gain exponents integrated along laser rays 
• 1D, linear, kinetic, fast – no speckles, filamentation, nonlinear kinetics 

• pF3D: paraxial envelope propagation code 
• Massively parallel, 3D NIF-relevant volumes [R. Berger, S. Langer - Tuesday] 

 
SRS: peak reflectivity ~ 0.3%, from fill gas 
• Measured and gain spectra: close, contain two distinct wavelengths 
• pF3D: two SRS wavelength groups: dominant one agrees with data 

 
SBS: Peak reflectivity ~ 3% when laser hits Ta plate 
• Gain spectrum close to data, but gain from gas not Ta 
• pF3D modeling ongoing 
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MagLIF NIF shot follows standard NIF  
“warm” (293 K) surrogacy approach 

• Gaspipe: 1 cm long, 1 cm diameter 
• Thin window: 0.75 um polyimide 

• Use same warm and cryo 
• MagLIF D2 fill breaks window @ STP 
• Use large hydrocarbon: match ne 

• Fill: neopentane C5H12 @ 1 atm.  
• ne = 0.116 ncrit fully ionized 
• Same ne as D2 at 3.5 mg/cm3 

• No imposed B field: 10-20 T in 2017? 

NIF TARGET 

ne / ncrit  @ 8.5 ns  [HYDRA sim.] 

Ta plate 

Plastic tube 

C5H12 fill 

Laser focus 

Time  [ns] 
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10 ns peak power: 
3 TW  1.6*1014 W/cm2 

2 ns “toe”:  
burn down window 

• Wavelength: 351 nm “3w” 
• One 30o cone quad (4 beams) – Q31B 
• Nominal phase plates, F=8 for quad 
• “Checkerboard” polarization smoothing 
• SSD: 45 GHz 
• Focal spot: ellipse, radii  (824, 590) um 

NIF LASER: well-conditioned 

Laser pulse 
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Low power and intensity gave low backscatter, 
some SBS when laser hits Tantalum plate 

Backscatter into FABS  
detector = lens aperture 

Laser hits 
Ta plate 

SRS NBI (Near Backscatter Imager) 
Image centered on laser ports 

FABS detector 
in each laser 
beam port 

Quad Q31B 

“checkerboard”  
polarization smoothing 

Laser 
power [a.u.] 

• Laser hits Ta plate at 10 ns – close to x-ray camera data 
• Additional backscatter on NBI plate outside of lens ~ few *FABS: analysis ongoing 

Peak SRS: 8.5 ns 
time of pF3D sims 

SBS 
SRS 
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SRS data and gain spectrum qualitatively similar 
before 10 ns 

Measured SRS spectrum  
[decibels] 

SRS linear gain spectrum 

Max. of FABS 

• Main feature moves to shorter wavelength with time  lower ne 

• Longer wavelength feature appears late in time 

Not in 
data 
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Ta plate 

Plastic tube 

C5H12 fill 

Plasma conditions from HYDRA run at 8.5 ns: 
peak measured SRS 

HYDRA run:  
• No MHD 
• f=0.05 electron heat flux limit 
• DCA non-LTE atomic physics 

Intensity  [W/cm2] 

Te  [keV] 

ne / ncrit 
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SRS at 8.5 ns: two features in data and  
gain spectrum 

FABS data 

Gain 

pF3D wavelengths 

SRS matching 
lSRS [nm]  Te [keV]  ne/ncrit  kEPWlDe 

464   1   3.6%   0.40 
536   0.5   11.2%  0.14 
 
Te chosen from pF3D results 
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pF3D*: paraxial envelope light propagation code, 
massively parallel 

Light wave vector potential: 

Slowly-varying 
envelope 

Polarization: 
fixed, in xy plane 

Laser envelope equation: 

*R. L. Berger, C. H. Still, E. A. Williams, A. B. 
Langdon, Phys. Plasmas 1998 

Envelopes evolved: 
• Laser light 
• SRS light – 1 or 2 wavelength groups 
• SRS Langmuir wave – 1 or 2 groups 
• SBS light 
• SBS ion wave:  no time enveloping 
 
Background hydro w/ ponderomotive force:  
• Filamentation 
• Cross-beam energy transfer 

Advection: 
not strong  
damping limit 

Damping Refraction SBS SRS Diffraction: 
Feit-Fleck form 

DAW phase shift 
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pF3D “Letterbox” run for backscatter:  
routine vs. “heroic” 3D run 

Spatial zoning: dx = dy = 2 l0,  dz = 3 l0 

Plasma volume 1.9 mm3 

Zones: 3.9 billion 
LLNL Sequoia machine: 8192 cpu’s , ~ 1 day 

Sample letterbox: D. Hinkel et al., Phys. Plasmas 2008 

“Letterbox”: slice in one  
transverse direction  

 

• Same intensity distribution and 
speckle statistics as full beam 

Computing resources 

Laser Intensity in transverse plane 
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Ta plate 

Plastic tube 

C5H12 fill 

Peak SRS (8.5 ns): pF3D agrees with data: 
shorter wavelength SRS dominates, SBS small 

Reflectivity: 
2 SRS groups, and SBS 

FABS data 

Gain 

pF3D wavelengths: 
464, 536 nm 

Measured reflectivity into FABS:  
SRS: 0.3%, at 480 nm, << at 540 nm 
SBS: noise 

pF3D domain 
SRS, 464 nm 

SRS, 536 nm 

SBS 

0.07% 

ne / ncrit 
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Peak SRS: SRS develops at end of laser path 

ne / ncrit 

Laser intensity [W/cm2] 

SRS @ 464 nm intensity [W/cm2] 

SRS @ 536 nm intensity [W/cm2] 

• Time 104 ps 
•  Intensities on 
 different log scales 
• Aspect ratio not unity 

pF3D 

laser 
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Late-time SBS gain spectrum consistent with 
data 

Measured SBS spectrum  SBS linear gain spectrum 
close to data 

Max. of  
FABS 

[decibels] 

Late-time SBS occurs when laser hits tantalum back plate: 
but where is it coming from? 

Lineouts 
Next 
slide 

Lineouts 
Next 
slide 

Not in  
data 
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SBS gain spectra late in time: most gain coming 
from gas, some at short wavelength from Ta 

10 ns 

11.5 ns 

Gas + Ta Fill gas 
only 

Fill gas 
only 

Blue: ray avg 

Red: 
Gas + Ta 
ray avg 

Gas + Ta 

Gain 
In Ta 

Peak in  
FABS data 

SBS seed in Ta plate, 
Amplified in gas? 
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Conclusions and future work 

Modeling 
• HYDRA correctly gives laser propagation, based on x-ray camera data 
• SRS: two wavelengths in gain and data, pF3D gives same dominant one as data 
• SBS burst when laser hitting Ta back plate, but gain in gas at that time 
 
Future NIF shots 
• Push to higher backscatter risk: 

• Higher intensity 
• Higher fill density 

• Cryogenic D2 fill, thin window: ignition relevant, instead of warm surrogate C5H12 

• Imposed B field: 10-20 T in 2017? 

Warm C5H12 fill, no imposed B field: 
Successful laser propagation at MagLIF fusion-gain scale 

Cryogenic D2 fill, imposed B field: 
Will test complete MagLIF scheme – to be done soon… 

B. Pollock, R2-1:  
Prior talk 
More on expts 
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BACKUP BELOW 
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Tantalum: A=181, Z=42 
Te = 2 keV,  u=0 

SBS shift in high Z plasma: 




